Работа коленчатого вала ДВС

Коленчатый вал двигателя внутреннего сгорания: устройство, назначение, принцип работы

Коленчатый вал (коленвал) двигателя – это одна из важных деталей КШМ, расположенная в цилиндровом блоке. Вал преобразует поступательные движения поршней во вращательный момент, который через трансмиссию передается на колеса автомобиля.

Устройство коленчатого вала

Сложная конструкция коленвала представлена в виде расположенных по одной оси колен – шатунных шеек, соединенных специальными щеками. При этом количество колен зависит от числа, формы и месторасположения цилиндров, а также тактности двигателя автомобиля. С помощью шатунов шейки соединяются с поршнями, совершающими поступательно-возвратные движения.

В зависимости от расположения коренных шеек коленвал может быть:

  • полноопорным – когда коренные шейки расположены по две стороны от шатунной шейки;
  • неполноопорным – когда коренные шейки расположены только по одну из сторон от шатунной шейки.

В большинстве современных автомобильных двигателей применяются полноопорные коленвалы.

Итак, основными элементами коленвала являются:

  • Коренная шейка – основная часть вала, которая размещается на коренных вкладышах (подшипниках), находящихся в картере.
  • Шатунная шейка – деталь, соединяющая коленвал с шатунами. При этом смазка шатунных механизмов осуществляется благодаря наличию специальных масляных каналов. Шатунные шейки в отличие от коренных шеек всегда смещены в стороны.
  • Щеки – детали, соединяющие два типа шеек – коренные и шатунные.
  • Противовесы – детали, которые предназначены для уравновешивания веса поршней и шатунов.
  • Фронтальная (передняя) часть или носок – часть механизма, оснащенная колесом с зубцами (шкивом) и шестерней, в некоторых случаях гасителем крутильных колебаний, который осуществляет контроль над мощностью привода ГРМ (газораспределительного механизма), а также других механизмов устройства.
  • Тыльная (задняя) часть или хвостовик – часть механизма, соединенная с маховиком при помощи маслоотражающего гребня и маслосгонной резьбы, осуществляет отбор мощности вала.

Фронтальная и тыльная сторона коленчатого вала уплотняется защитными сальниками, которые препятствуют протеканию масла там, где выступающие части маховика выходят за пределы блока цилиндров.

Вращательные движения всего механизма коленвала обеспечивают подшипники скольжения – тонкие стальные вкладыши, с защитным слоем антифрикционного вещества. Для предотвращения осевого смещения вала, применяется упорный подшипник, установленный на коренной шейке (крайней или средней).

Коленвал двигателя изготавливается из износостойкой стали (легированной или углеродистой) или модифицированного чугуна, методом штамповки или литья.

Принцип действия коленчатого вала

Несмотря на сложность самого устройства, принцип работы коленвала достаточно прост.

В камерах сгорания происходит процесс сжигания поступившего туда топлива и выделения газов. Расширяясь, газы воздействуют на поршни, совершающие поступательные движения. Поршни передают механическую энергию шатунам, соединенным с ними втулкой или поршневым пальцем.

Шатун в свою очередь соединен с шейкой коленвала подшипником, вследствие чего каждое поступательное поршневое движение преобразуется во вращательное движение вала. После того как происходит разворот на 180˚, шатунная шейка движется уже в обратном направлении, обеспечивая возвратное движение поршня. Затем циклы повторяются.

Процесс смазки коленчатого вала

Смазка коленвала обеспечивается за счет шатунных и коренных шеек. Важно помнить, что смазка коленчатого вала всегда происходит под давлением. Каждая коренная шейка обеспечена индивидуальным подводом масла от общей смазочной системы. Поступившее масло попадает на шатунные шейки по специальным каналам, расположенным в коренных шейках.

демпфер колебаний коленчатого вала двигателя внутреннего сгорания

Изобретение относится к машиностроению, в частности к демпферам колебаний агрегатов ДВС, компрессоров и т.п. Демпфер содержит ступицу (1) с дисковой частью (2) и обод (3), между которыми размещен (привулканизирован) вязкоупругий демпфирующий кольцевой элемент (4). Отличительной особенностью демпфера является то, что дисковая часть (2) ступицы (1) выполнена из газопроницаемого, пористого, металлического прессованного материала, например пористого сетчатого материала. В основном конструкция предназначена для двигателей внутреннего сгорания. Технический результат — ослабление излучения звука элементами демпфера, упрощение и удешевление конструкции, повышение надежности и эффективности ее в работе. 1 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2160398

Изобретение относится к технике гашения колебаний в механических агрегатах двигателей внутреннего сгорания (далее ДВС) посредством использования свободно колеблющихся масс, вращающихся вместе с валом, в частности в конструкциях демпферов колебаний коленчатого вала ДВС.

Классическая схема демпфера колебаний, в частности коленчатого (приводного) вала двигателя внутреннего сгорания (ДВС) представлена, например, в заявке Японии N 5-53974, кл. F 16 F 15/12, 1984, и включает присоединительную ступицу, сформированную из присоединительной и дисковой частей, и обод, между которыми радиально привулканизировано упругое (резиновое) кольцо, выполняющее роль настроенной колеблющейся массы.

Демпфер выполняет полезную функцию успокоителя динамических деформаций, возникающих в результате крутильных и изгибных колебаний непосредственно структуры коленчатого вала, однако дисковая часть его ступицы и обод (свободно качающаяся масса демпфера), совершая интенсивные крутильные, изгибные и осевые колебания относительно присоединительной части ступицы, являются, таким образом, «вредным» звуковым излучателем типа звукоизлучающей диафрагмы громкоговорителя. Более того, демпфер, установленный на носке коленчатого вала двигателя внутреннего сгорания, например вблизи тонкостенной крышки (кожуха) привода газораспределительного механизма (далее ГРМ), может неизбежно усиливать (и существенно) указанное звуковое излучение крышки как вторичного излучателя звука.

В качестве прототипа выбран демпфер колебаний коленчатого вала двигателя внутреннего сгорания, описанный в заявке Японии N 2-9214 (JP)B, кл. F 16 F 15/12, опубл. 01.03.90, N 5-231, содержащий ступицу, на которую через упругое кольцо посажен массивный обод, выполняющий функцию гасителя крутильных колебаний коленвала. В ступице, со стороны носка коленчатого вала, выполнено цилиндрическое углубление, внутри которого размещен второй кольцеобразный динамический демпфер, выполненный в виде массивного кольцевого элемента, закрепленного через упругую прокладку на торцевой части цилиндрического углубления, и поглощающий изгибные вибрации носка коленчатого вала, т.е. выполняющий функцию гасителя изгибных колебаний коленвала.

Такой комбинированный виброгаситель крутильных и изгибных колебаний, включающий двухмассовую колебательную систему, подключенную к структуре коленчатого вала, позволяет достаточно эффективно ослабить крутильные и изгибные колебания носка коленчатого вала, за счет тангенциального, касательного и консольного подключения упруго закрепленных соответствующих масс, и соответственно успокоить структуру коленчатого вала в целом. В это же время, вследствие ослабления изгибных и осевых колебаний носка коленвала, дополнительно ослабляются интенсивные изгибные колебания дисковой части демпфера как вибрирующей диафрагмы и, таким образом, ослабляется излучаемый ею (дисковой частью) звук.

Однако и в прототипе имеет место то обстоятельство, что составные части демпфера, в первую очередь обод и дисковая часть ступицы, продолжают совершать достаточно интенсивные колебания относительно ступицы, являясь при этом по сути дела излучателями диафрагменного типа, т.к. «раскачиваются» от периферии колеблющимися массами (кольцами) демпфера. Кроме того, эффективность в работе прототипа достигается за счет применения достаточно сложного конструктивного решения, связанного с существенным удорожанием конструкции, увеличением массы, усложнения технологии изготовления и контроля качества (собственные резонансные частоты демпфера должны находиться в узком поле допуска). При этом следует отметить, что работа демпфера основана на преобразовании колебательной энергии в тепловую, возникающую при деформировании резиновых слоев (молекулярное трение), а в прототипе отсутствуют какие-либо средства, ограничивающие допустимый температурный режим. В процессе эксплуатации демпфера его резиновые элементы значительно нагреваются также от горячих частей двигателя (носка коленвала), что приводит к существенному изменению их упругожесткостных и демпфирующих характеристик, снижается их долговечность, а значит, эффективность и ресурс демпфера в целом.

Задачей изобретения является ослабление излучения звука элементами демпфера, упрощение и удешевление конструкции, повышение надежности и эффективности ее в работе.

Для решения поставленной технической задачи предлагается в известном демпфере колебаний, содержащем ступицу с дисковой частью и обод, между которыми размещен упругий, в частности резиновый кольцевой элемент, по крайней мере дисковую часть ступицы выполнить из металлического прессованного волокнистого воздухопроницаемого материала (пористого сетчатого материала, далее ПСМ).

При таком конструктивном исполнении положительный эффект достигается за счет выполнения дисковой части ступицы демпфера из ПСМ или другого аналогично высокодемпфирующего материала, ослабляющего излучение звука этой частью демпфера, за счет уменьшения коэффициента излучения этой пористой структуры. Более того, пористая воздухопроницаемая структура, из которой состоит дисковая часть ступицы, выполняет даже функцию звукопоглощающего элемента в зоне шумовиброактивного переднего кожуха ограждения привода газораспределительного механизма и вспомогательных агрегатов двигателя, а также позволяет обеспечить более эффективный отвод тепла от эластичной резиновой вставки и одновременно уменьшить подвод тепла от нагретого коленчатого вала и ступицы демпфера, вследствие увеличенных потерь тепла в волокнистом воздухопроницаемом слое ПСМ демпфера, что важно для ее долговечности. Наличие промежуточного вибродемпфирующего слоя в структуре демпфера благоприятно с точки зрения гашения его собственных нежелательных (паразитных) резонансов, вследствие высоких значений коэффициента механических потерь слоя из ПСМ.

Сущность изобретения поясняется чертежом, где показано поперечное сечение демпфера колебаний.

Демпфер колебаний содержит ступицу 1 с дисковой частью 2 и обод 3, между которыми размещен упругий (резиновый) кольцевой элемент 4. На чертеже, в качестве примера, демпфер установлен на носке коленчатого вала 5 двигателя внутреннего сгорания. Дисковая часть 2 ступицы 1 демпфера выполнена из металлического прессованного пористого воздухопроницаемого материала, например пористого сетчатого материала.

Работает демпфер обычным образом.

Известно, например, из публикаций (копии прилагаются):

— Anders Agren. Aspects of how to design less noisy diesel endines. NAM, 96, Nordic Acoustical Meeting Helsinki, 12-14 June 1966, p. 113. 120.

— Orjan Johansson, Anders Agren. Noise radiation from a torsional vibration damper in a diesel engine. INTER-NOISE, 93, Leuven-Belgium, August 24-26, p. 1501. 1504.

— Шум на транспорте. Пер. с англ. К.Г. Бомштейна. М.: Транспорт, 1995, с. 69, рис. 4.21 и с. 102,

что демпфер крутильных колебаний коленчатого вала, выполняя полезную функцию успокоителя динамических деформаций (крутильных и взаимосвязанных с ними изгибных и осевых) непосредственно структуры коленвала, с целью снижения динамического возбуждения блока картера цилиндров двигателя, через коммуникационные связи — коренные опоры (подшипники) на его внешние стенки и близкорасположенные тонкостенные присоединительные детали — масляный поддон, крышку или кожух привода газораспределительного механизма, защитный кожух корпуса сцепления с соответствующим снижением корпусного шума двигателя, может являться (демпфер) в свою очередь непосредственным интенсивным источником шумового излучения. Действительно, как это отмечено в названных работах, дисковая часть и венец демпфера, совершают интенсивные изгибные колебания относительно ступицы и являются по сути излучателями звука типа вибрирующей диафрагмы громкоговорителя. Более того, вблизи расположенная тонкостенная крышка (кожух) привода газораспределительного механизма, или торцевая передняя стенка масляного поддона (см. вышеприведенные публикации), может существенно усиливать указанное излучение звука.

Следует отметить и то обстоятельство, что при работе демпфера происходит существенный нагрев и возможный перегрев резинового кольцевого элемента 4, что приводит к существенному изменению его упругожесткостных и демпфирующих свойств, частотной расстройке и снижает долговечность конструкции демпфера в целом, поскольку эффект демпфирования подразумевает именно преобразование вибрационной энергии, при деформациях резинового слоя внешней кольцевой массой демпфера, его ободом 3, совершающей крутильные виброперемещения в тепловую энергию материала упругого кольцевого элемента 4 (резину) с высоким внутренним трением (молекулярное трение).

Таким образом, с одной стороны необходимо избегать перегрева резины, за счет эффективного отвода избыточного тепла от нее, а с другой стороны — уменьшать подвод избыточного тепла от нагретой металлической ступицы 1 и носка коленчатого вала.

Именно пористая прессованная металлическая воздухопроницаемая структура дисковой части 2 ступицы 1 в предлагаемом демпфере позволяет частично решить обозначенные выше проблемы. Одновременно с этим, изгибные и осевые колебания коленчатого вала дополнительно демпфируются пористой вязкоупругой демпфирующей структурой дисковой части 2, за счет реализации микродеформаций структуры этого элемента (ПСМ) с высоким внутренним трением и рассеиванием механической энергии деформаций микроструктуры материала в преобразуемую тепловую энергию трения микрочастиц структуры дисковой части 2 ступицы 1.

Таким образом, эффективность предлагаемого демпфера обуславливается за счет введения в конструкцию слабоизлучающей высокодемпфирующей пористой металлической прессованной воздухопроницаемой структуры дисковой части ступицы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Демпфер колебаний, в частности коленчатого вала двигателя внутреннего сгорания, содержащий ступицу с дисковой частью и обод, между которыми размещен кольцевой элемент из вязкоупругого демпфирующего материала, отличающийся тем, что дисковая часть ступицы демпфера выполнена из металлического, пористого, газопроницаемого материала.

2. Демпфер по п.1, отличающийся тем, что дисковая часть ступицы демпфера выполнена из пористого сетчатого материала.

Работа коленчатого вала ДВС

Коленчатый вал или, как часто говорят автомобилисты, «коленвал» – это одна из самых значительных (и не только по размеру) и ответственных деталей современного двигателя. Он располагается в нижней части блока цилиндров, снизу его закрывает картер – поддон двигателя, заполненный моторным маслом.

Как выглядит

Как видно на фото, этот элемент имеет довольно сложную форму. Его основными составными частями являются:

Коренные (опорные) шейки служат для опоры коленвала в так называемых «постелях». В них крепятся не смещающиеся в процессе работы подшипники, обеспечивающие вращение. Поскольку на коренные шейки приходятся более значительные нагрузки, их диаметр больше, чем у шатунных.

Шатунные шейки (колена) – это опорные поверхности шатунов. С учетом порядка работы цилиндров колена смещаются относительно оси вращения на определенные углы.

Если коленчатый вал сконструирован так, что по обе стороны от каждой шатунной шейки находятся опорные, то он называется полноопорным, в противном случае – неполноопорным. В современных автомобильных двигателях наибольшее распространение имеют именно полноопорные коленвалы.

Колена соединены между собой щеками. Противовесы, являющиеся продолжениями щек в сторону противоположную колену, уравновешивают центробежные силы, возникающие при вращении. Внутри коленвала имеется масляные каналы, при помощи которых происходит смазка шатунных шеек.

Из каких материалов и как изготавливается

Материал и технология производства зависят от класса и назначения автомобиля:

  1. Для стандартных серийных автомобилей коленчатый вал отливается из чугуна, этим достигается минимальная себестоимость производства.
  2. Коленвал более мощных и спортивных машин кованый и изготовлен из стали. По сравнению с чугунным он обладает улучшенными характеристиками по таким параметрам, как габариты, вес и прочность.
  3. Самый дорогостоящий вариант, использующийся в люксовых моделях, – коленчатый вал, выточенный из цельного куска стали.

Место перехода щек в шейки является самым нагруженным, так как здесь концентрируются максимальные напряжения. Для того чтобы разгрузить соединение, его выполняют с полукруглым переходом (галтелью). Как правило, галтели делают двойными с промежуточным технологическим пояском. Такое конструктивное решение позволяет сохранить максимальное значение активной площади шеек – поверхности, находящей под вкладышами.

Как раз по причине возникновения высоких нагрузок в соединениях, не нашел широкого применения коленчатый вал составной конструкции, в котором отдельные части соединены между собой крепежом.

Для чего необходим

При помощи кривошипно-шатунного механизма двигателя возвратно-поступательное движение поршней цилиндров двигателя переходит во вращательное движение и передается через трансмиссию к колесам автомобиля. Коленчатый вал как раз и нужен для того чтобы выполнить такое превращение. При работе каждый из поршней четырехтактного двигателя постоянно находится в одном из тактов:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

В фазе рабочего хода поршень толкает связанный с ним шатун, а тот, в свою очередь, смещает коленчатый вал. Так реализуется вращение. Следующий по порядку работы цилиндров двигателя поршень в это время сжимает горючую смесь и после ее воспламенения толкает свой шатун, в результате чего коленчатый вал непрерывно вращается.

К заднему, если смотреть со стороны расположения ремней/цепей механизма газораспределения, концу коленвала через фланец при помощи болтов крепится маховик – массивный чугунный диск с напрессованным зубчатым венцом (см. фото). Для того чтобы маховик не смещался и не нарушалась балансировка, предусмотрены центровочные штифты или специальные болты, расположенные несимметрично. Для предотвращения утечек масла на фланец маховика устанавливается дополнительное уплотнение (сальник).

Маховик накапливает энергию, необходимую для поддержания равномерного вращения в промежутках между воспламенениями горючей смеси в цилиндрах и выводит поршни из мертвых точек (крайних верхних и нижних положений поршня в цилиндре). Зубчатый венец маховика связан с шестерней стартера. При пуске двигателя маховик проворачивается стартером, придавая валу начальное вращение. Наконец, именно через маховик на узлы и агрегаты трансмиссии передается вращательное движение.

Обычно для контроля правильности установки фаз газораспределения на маховике имеются метки, указывающие положение первого поршня в верхней мертвой точке.

В передней части коленвала, называемой «носком», устанавливается шкив или шестерня привода газораспределительного механизма, элементов системы охлаждения и других агрегатов (см. фото). Носок уплотняется кольцевой манжетой (сальником). Кроме того, с внешней стороны носка в крышке двигателя устанавливается пылеотражатель, препятствующий проникновению загрязнений в картер.

Способ оценки надежности работы шатунных и коренных подшипников коленчатого вала двигателя внутреннего сгорания

Владельцы патента RU 2278366:

Изобретение относится к области испытательной техники и предназначено для использования в двигателестроснии, в частности для оптимизации работы системы смазки коленчатого вала двигателя внутреннего сгорания. Изобретение направлено на возможность оценки надежности работы шатунных и коренных подшипников коленчатого вала двигателя внутреннего сгорания с точностью, позволяющей так оптимизировать работу системы смазки, чтобы предотвратить неравномерный износ шатунных и коренных подшипников из-за обеднения смазки по номерам цилиндров на всех эксплуатационных режимах до полной выработки моторесурса двигателя. Этот результат обеспечивается за счет того, что способ оценки надежности работы шатунных и коренных подшипников коленчатого вала при критических режимах работы двигателей внутреннего сгорания включает измерение расхода масла через коренные и шатунные подшипники коленчатого вала, при этом, при измерении расхода масла через коренной подшипник, маслоканал шатунного подшипника закрыт пробкой, а при измерении расхода масла через шатунный подшипник закрыт пробкой маслоканал коренного подшипника и при этом количество масла прокачиваемого через коренной подшипник должно быть больше или равно количеству масла, прокачиваемого через шатунный подшипник коленчатого вала. 2 ил.

Изобретение относится к области двигателестроения, в частности может быть применено для оптимизации работы системы смазки коленчатого вала двигателя внутреннего сгорания (ДВС).

Известен способ оценки надежности работы шатунных и коренных подшипников коленчатого вала, с целью повышения их работоспособности, включающий определение расхода масла через шатунные и коренные подшипники коленчатого вала в мерные баки, измерение температуры вкладышей шатунных подшипников на работающем двигателе, анализ расчетных нагрузок на подшипники, оценку износостойкости подшипников в различных условиях эксплуатации при различной эффективности очистки масла и др. При этом предполагается, что через подшипники двигателя прокачивается смазка, достаточная для обеспечения гидродинамической смазки подшипников, при всех возможных режимах работы двигателя (см. автор Г.Д.Чернышов и др., М.: Машиностроение, 1974 г. Повышение надежности дизелей ЯМЗ и автомобилей КрАЗ, стр. 139-141).

Недостатки указанного способа в том, что количество смазки, подаваемого к подшипникам определяется усредненно и не учитывает импульсивность потока.

Наиболее близким к заявленному способу оценки надежности работы шатунных и коренных подшипников является исследование подачи смазки к подшипникам из предположения, что расход масла подаваемого к коленвалу зависит от совпадения траектории вращения подшипника и потока масла, от центробежных потерь, от потерь, связанных с ускорением масла до скорости вращения поверхности шейки, от потерь на внутреннее трение и потерь ускорения в перепуском канале вследствие импульсного характера потока. (РЖ ДВС 1986 г. №8 реф. 8-39-35 реферат SAE Technical Paper Series 860229).

Недостаток этого способа в том, что количественный анализ подачи масла к шатунным и коренным подшипникам производится при изменении скорости и давления, из-за импульсивности потока, по усредненным величинам по времени. В итоге результат является приблизительным, особенно при пониженных оборотах. Кроме этого визуальное восприятие прохождения потока смазки производится через стеклянные подшипники, которые требуют изготовления испытательного стенда, что связано с большими материальными затратами.

Оптимизация работы системы смазки при помощи этих способов оценки надежности шатунных и коренных подшипников не позволяет обеспечить подачу гарантированного избыточного количества смазки на все шатунные и коренные подшипники в многоцилиндровых дизельных двигателях, вследствие чего моторесурс остается недоиспользованным.

Была поставлена задача — оценить надежность работы шатунных и коренных подшипников коленчатого вала двигателя внутреннего сгорания с точностью, позволяющей так оптимизировать работу системы смазки, чтобы предотвратить неравномерный износ шатунных и коренных подшипников из-за обеднения смазки по номерам цилиндров на всех эксплуатационных режимах до полной выработки моторесурса двигателя.

Поставленная задача решается за счет того, что параметры системы смазки определяются при критических режимах работы ДВС, при этом измерение расхода масла через коренной подшипник производится при полностью закрытом маслоканале шатунного подшипника, а измерение расхода масла через шатунный подшипник производится при полностью закрытом маслоканале коренного подшипника, причем количество масла прокачиваемого через коренной подшипник должно быть больше или равно количеству масла, прокачиваемого через шатунный подшипник коленчатого вала.

Количество масла поступающего на смазку подшипников измеряется при помощи расходомера на текущий момент времени и корректируется подбором производительности и давления маслонасоса, изменением размеров маслоканалов, параметров коренных подшипников, маслоканалов блока цилиндров, подбором оптимальных пространственных положений и размеров маслоканалов коленчатого вала и др.

В результате поиска, по патентной и другой научно-технической литературе, аналога, совпадающего с заявляемым способом по всей совокупности существенных признаков обнаружено не было. Кроме этого в результате сравнения с прототипом в заявляемом способе были выявлены существенные признаки, которые позволяют оптимизировать работу системы смазки ДВС более качественно и с меньшими затратами. Следовательно — заявляемый способ соответствует условиям патентоспособности.

Изобретение поясняется чертежами, где:

Фиг.1 — изображен (схематично) фрагмент коленчатого вала с коренной и шатунной шейкой, пробкой заглушен маслоканал коренного подшипника;

Фиг.2 — изображен (схематично) фрагмент коленчатого вала с коренной и шатунной шейкой, пробкой заглушен маслоканал шатунного подшипника;

Для реализации способа по изобретению применяется стандартный коленчатый вал. Масло подается на шатунные подшипники 1, через запрессованное в отверстие на оси вращения коленчатого вала 2 трубчатый маслоканал 3. При этом маслоканал на коренной шейке 4 заглушен пробкой 5. На фиг.2 показана пробка 6, которой заглушен маслоканал шатунного подшипника при определении расхода масла через коренной подшипник. Количество прокачиваемого масла определяется расходомером (который на чертеже не показан) при критических и всевозможных режимах работы двигателя, при различных температурах, оборотах коленчатого вала и максимально возможных зазорах (величина зазора предполагает износ). Предлагаемый способ был применен для оценки надежности работы шатунного подшипника на пятом цилиндре двигателя КамАЗ, который расположен на передней части двигателя. В результате проведенных работ выяснилась необходимость увеличения давления масла и изменение геометрии коренных подшипников. От внедрения в производство мероприятий по предлагаемому изобретению ожидается увеличение моторесурса и снижение рекламаций на серийных двигателях КамАЗ.

Предлагаемый способ соответствует условию промышленной применимости и может быть использован в условиях существующего производства.

Способ оценки надежности работы шатунных и коренных подшипников коленчатого вала при критических режимах работы двигателей внутреннего сгорания, включающий измерение расхода масла через коренные и шатунные подшипники коленчатого вала, отличающийся тем, что при измерении расхода масла через коренной подшипник маслоканал шатунного подшипника закрыт пробкой, а при измерении расхода масла через шатунный подшипник закрыт пробкой маслоканал коренного подшипника и при этом количество масла, прокачиваемого через коренной подшипник, должно быть больше или равно количеству масла, прокачиваемого через шатунный подшипник коленчатого вала.